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Abstract 

 
In order to meet the growing requirements from general aviation services and helicopter 
emergency rescue, the Real-Time Mesoscale Analysis (RTMA) system provides analyses of 
surface visibility and cloud ceiling height since 2013 and 2016 respectively.  Its analysis 
component uses NCEP’s Grid-point Statistical Interpolation (GSI) configured to run in the two-
dimensional surface mode. The fundamental assumption justifying the existence of an optimal 
analysis solution is that the innovation follows a Gaussian distribution.  However, visibility and 
ceiling height fields are characterized by high degrees of discontinuity in both spatial and temporal 
dimensions and their conditional error statistics vary with states.  Directly using these fields in a 
variational analysis system often undermines the relatively accurate observations in 
circumstances dominated by severe weather systems, where the first guess is likely to depart far 
from the observations.  Many efforts have been made to transform non-Gaussian variables to 
have a Gaussian distribution, or close to it.  Among the methods, a logarithmic transformation is 
often used.  The logarithmic transformation in visibility and ceiling height improves the 
convergence in minimizing the cost function and uses more observation data, particularly in the 
areas occupied by stormy weather systems.  However, this method often generates spuriously 
large analysis increments over the areas of clear weather.   
In this study, a nonlinear transformation function (NLTF) is applied to visibility and ceiling height 
analysis in the RTMA. In this method, a function is derived to map the visibility and ceiling height 
into a space tending to a more uniform variance.  Modulated by a varying parameter in the range 
of [0-1], the function family includes linear and logarithmic functions at the respective ends of the 
parameter range.  A subjective approach, based on evaluating histograms of the variables, is 
used to determine the optimal value of the parameter. The statistical errors were estimated based 
on the statistics of innovation and then adjusted based on the statistics from single observation 
test and months-long analysis run. An experimental RTMA with the NLTF was conducted for eight 
months and compared to the control run that uses the previous analysis algorithm.  The 
assessment and evaluation are carried out using a complete set of measures appropriate to 
categorized visibility and ceiling height according to FAA flight category definitions.  The results 
showed that NLTF improves the visibility and ceiling height analysis consistently.  Therefore, 
NLTF was implemented into the operational RTMA system on 5th December 2018.    
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1. Introduction 

Information about frequently-updated surface visibility and cloud ceiling height (hereafter, simply 
‘ceiling height’) at high spatial resolution is important to general aviation services and helicopter 
emergency rescue.  The Real-Time Mesoscale Analysis (RTMA) has been developed at 
NCEP/NOAA since 2006 to provide gridded surface weather analysis for the atmospheric 
scientific studies and for public aviation services. The early RTMA product includes gridded 
analyses of surface pressure, temperature and moisture at 2 meters above the ground level, and 
wind at 10 meters (Pondeca et al. 2011).  In its recent development, the RTMA includes more 
surface weather variables and areas, currently covering five regions, these being: the contiguous 
United States (CONUS); Alaska; Hawaii; Puerto Rico; and Guam.  To meet the quickly growing 
requirements from aviation and the emergency rescue services, visibility and ceiling height 
analyses were added to RTMA in 2013 and 2016 respectively (Pondeca, et al. 2015).  
Furthermore, RTMA provides 15-minute analyses in the CONUS since the fall of 2018 (Yang et 
al. 2017).  Figure 1 depicts the CONUS, which is the focus of this paper. 
 
The advances in the following four areas make the RTMA successful: (1) the High-Resolution 
Rapid Refresh (HRRR) with a sophisticated cloud prediction scheme and hydrometeors analysis 
(Benjamin et al. 2016) from which visibility and ceiling height are derived; (2) the grid-space 
statistical interpolation system (GSI) developed at NCEP/NOAA  (Wu et al. 2002); (3) the 
existence  of a reliable and dense network of conventional observations, plus the recent sub-
hourly special reports (SPECIs), which reflect flight-affecting weather systems in near real time; 
and (4) high performance computing.  
  
The analysis component of the RTMA is the GSI configured to run in two-dimensional surface 
mode. The fundamental assumption justifying the existing optimal analysis solution is that the 
innovation collectively obeys a Gaussian distribution.  However, both visibility and ceiling height 
fields are highly discontinuous in both spatial and temporal dimensions; the error statistics depend 
on states, which ranges from several meters to kilometers for visibility and less than a hundred 
feet to a thousand feet for ceiling height.  Directly using these fields in a variational analysis 
system often leads to the rejection or undermining of relatively accurate observations in 
circumstances dominated by severe weather systems, where the first guess likely departs far 
from the observations.  Many efforts have been made to transform non-Gaussian variables to a 
Gaussian distribution or close to it.  Among these methods, a logarithmic transformation is often 
used.  The logarithmic transformation in visibility and ceiling height improves the convergence in 
minimizing the cost function and the usage of the observations, particularly in the areas occupied 
by stormy weather systems.  However, this method often generates spuriously large analysis 
increments over the areas with clear weather.   
 
 To solve this problem, a nonlinear variable transformation function (NLTF) is derived to transform 
a measured variable with non-uniform error to one with uniform error.  In this paper we document 
the implementation of the NLTF to visibility and ceiling height analysis in the RTMA and 
demonstrate the improvements. In section 2, three components of the RTMA are described 
briefly.  In section 3 the non-Gaussian statistical features in visibility and ceiling height are 



4 
 

depicted.  Since the FAA flight category definitions are the guidance for aviation, the statistics are 
expressed in terms of the equivalent category.  The previous analysis algorithm for visibility and 
ceiling height is also reviewed. Section 4 presents the equations of NLTF and the function 
graphics. It also documents a subjective approach to determine the parameter of the NLTF and 
a method to estimate error statistics for the transformed visibility and ceiling height.  Section 5 is 
devoted to the assessment and evaluation of the experimental run with NLTF with respect to the 
control run. The evaluation is based on a complete set of measures, which are appropriate to 
categorized visibility and ceiling height. In the last section, we summarize the merits of the method 
and illustrate the remaining questions, and aspects to be improved.  
 
2. Real-Time Mesoscale System  
 
The RTMA consists of the following three components: 1) A downscaling and first guess process 
leveraging short-term forecasts from the best-available convection-allowing model output, namely 
the High Resolution Rapid Refresh (HRRR) and Rapid Refresh (RAP)  (Benjamin et al. 2016). 
The first guess for visibility and ceiling analysis is derived from the cloud and hydrometeor analysis 
of the aforementioned models. Figure 1 shows the areas covered by the HRRR and RTMA 
CONUS domains. The HRRR is the primary model providing the first guess, whereas the RAP is 
used to fill in the edges of the RTMA domain not covered by the HRRR; 2) The GSI system 
configured to run in two-dimensional variational mode. The observations come from a variety of 
platforms including surface observing systems (METARS, mesonets, buoys, and C-MAN), 
geostationary satellite cloud products, satellite cloud drift winds and scatterometer winds, and 
altimeter-derived significant wave heights.  For visibility and ceiling height, METAR is the main 
observation source, which normally reports hourly. However, SPECIs are extremely important, 
because they are generated in time to report the advent of flight-affecting weather systems; 3) A 
postprocessing component to convert the first guess and analysis into GRIB2 format, as well as 
to estimate the analysis uncertainty based on diagnostics that use the Lanczos vectors provided 
by the GSI solution iterations (Pondeca, et al. 2011). 
 
In the previous version of the RTMA, the visibility and ceiling height are converted into log-
distance space while the corresponding observations remain in their natural (linear-distance) 
form.  The implementation requires a linear approximation of the logarithm function to the 
observation quantities when combining the penalties calculated in logarithmic space with those 
calculated in the state space. This algorithm introduces nonlinearity into each minimization 
iteration, though in general the approximation is reasonable.  In situations dominated by severe 
weather systems, where the first guess likely departs far from the observation, if the innovation is 
calculated in the physical space, i.e., in its natural form, then the innovation is likely to be too large 
to pass the prescribed quality criterion, so the observation is rejected.  In section 5, we will show 
some examples. 
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 Figure 1:  (Left) HRRR Domain and (right) RTMA-CONUS domain. 
 
 
 3. Statistical features in the observations and the model forecast  
 
In this section, we first demonstrate the statistical features of high discontinuity and non-Gaussian 
distribution of the observed and forecast visibility and ceiling height in terms of histograms. We 
then present the distribution of the categorized fields according to the definition of the Federal 
Aviation Administration (FAA), as listed in Table 1. It is important to point out that the 
classifications are practically useful and meaningful.   
 
   
Table 1:  FAA flight category definition for ceiling height (C) and Visibility (V). 
 CEILING (ft) VISIBILITY (mi) 
Low Instrument Flight Rules (LIFR) < 500 < 1 
Instrument Flight Rules (IFR) 500 to <1000 1 to <3 
Marginal Visual Flight Rules (MVFR) 1000 to 3000 3 to 5 
Visual Flight Rules (VFR)                    > 3000                    > 5 

 
The top panel in Figure 2. shows the histogram computed from the visibility observation (in blue) 
and the first guess (in red) in June and July 2018.  The horizontal axis spans the range up to the 
RTMA analysis capping value of 16 km, and is uniformly divided into 30 bins numbered 1-30. 
Notice that there is only one outlier, or mode, at the 30th bin corresponding to the capping value.  
This outlier is so dominating that values in other bins are essentially invisible in a direct graphical 
comparison.  In order to see the histogram of the first 29 bins, they have to be replotted in the 
bottom panel of Figure 2.  Two features are revealed from replotting: the restricted visibility events 
occurred rarely, and the event counts increase gradually between bins 16 and 29, corresponding 
to the range of about 8000 - 15,500 meters for both observation and the first-guess. Note that the 
values of the first guess spread much more uniformly than those of the observations. 
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Figure 2:  Top panel: Histograms of visibility (VIS) in all 30 bins spanning the 16 km total 
range. Bottom panel: the histogram in the first 29 bins, computed with data covering June and 
July 2018.  The blue bars are for observation and the red bars for first-guess.   
 
Figure 3 shows the histogram of the ceiling height in the range of the first bin up to the 29th bin. 
The capping value is 16000 meters as in visibility. Similar to visibility, the data count in the 30th 
bin is out of proportion relative to the rest of the bins to be plotted. There are three clear modes 
in the first three bins corresponding to the values less than about 1738 feet, less than about 3479 
feet, and less than 5249 feet respectively.  The bin range is too large to capture low ceiling height 
events, which include LIFR, IFR and a portion of the MVFR (referring to the categories values in 
Table 1).  Note that the histogram values of the observed ceiling height, or event occurrences, 
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are so small within the range of bin 16 to bin 29 that they are barely visible at this vertical scale.   
However, the histograms of the first guess spread quite evenly across the range, indicating the 
artifact of the algorithm in HRRR analysis used to derive the ceiling height. 

 

 
Figure 3: The histograms of ceiling height (CIG) in the first 29 bins computed with data 
covering June-July 2018.  The blue bars are for observation and red bars for first-guess.   
 
Figures 4 and 5 show the distribution of categorized visibility and ceiling height for observation 
(blue bars) and the first-guess (red bars) respectively.  The data covers the period between June 
to July 2018.  As expected, weather with poor visibility and ceiling height occurs rarely, while 
weather with clear visibility and ceiling height occurs often.  
 

 
 
Figure 4: Distribution of categorized visibility. Data (percent) cover June and July 2018. 
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Figure 5: Distribution of categorized ceiling height. Data (percent) cover June and July 2018. 
 
The statistics vary from warm months to cool months.  To illustrate it, the same computation is 
conducted with the data of January and February 2019. The results are depicted in Figures 6 to 
7.  As expected, the values in LIFR and IFR are clearly increased, and the values in VFR remain 
dominant.  
 

 
 

Figure 6: Distribution of categorized visibility. Data (percent) cover January and February 
2019. 
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Figure 7: Distribution of categorized ceiling height. Data (percent) cover January and 
February 2019. 
 
Tables 2 and 3 are the multi-level contingency tables of visibility and ceiling height computed with 
the categorized analysis and the corresponding observations. Data covers the period of June and 
July 2018.  In statistics, a contingency table displays the conditional distribution of a variable given 
the associated variable’s distribution in a matrix format. The table header, ‘OBSERVATION’ 
denotes observation, and ‘FORECAST’ denotes HRRR’s forecast.  The value in each ith/jth cell 
is the total count of the forecast categorized as ith group, given the corresponding observation is 
categorized as jth group.   We present the value in each cell as a percentage, i.e., a count in each 
cell is divided by the total observation count in the corresponding category. For example, a value 
of 29.07 in the intersection of the first row and first column of Table 2 denotes that the forecast 
catches 29.07% of observed LIFR events. The values in the diagonal cells are called probability 
of detection, or Hit rate, denoting the correct forecast ratio, which is the count of both observation 
and forecast falling into the same category, divided by the categorized observed events.  Whereas 
the values in the off-diagonal cells represent the wrong forecast percentage relative to the total 
count of the categorized observed events, or marginal sum of each column.  Obviously, the 
forecast system has difficulty catching the poor visibility events, as indicated by a value of 48.05 
% (the intersection of the first column and the 4th row).  These tables also present two features:  
1) The forecast model has a high accuracy to forecast the clear weather: 84% for visibility and 
97.55% for ceiling height;  2) forecasting visibility is more difficult than forecasting ceiling height, 
as shown by the much smaller Hit rate values of Table 2 than those of Table 3. 
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Table 2:  Contingency table for visibility:  Percentage values (rounded to two decimal places) 
are computed with the data of June and July 2018.  The forecast is produced by the HRRR.   
 

   OBSERVATION 

 
 
 

FORECAST 

 LIFR        IFR       MVFR        VFR 

LIFR        29.07        12.10         7.63         0.58 

IFR        11.49         9.48         8.26         0.95 

MVFR        11.39        13.11        12.21         1.64 

VFR        48.05        65.31        71.90        96.84 

 
 
 
Table 3:  Contingency table for ceiling height:  Percentage values are computed with the data 
of June and July 2018.  The forecast is produced by the HRRR.   
 

  OBSERVATION 

 
 
 
 
FORECAST 

        LIFR        IFR       MVFR        VFR 

LIFR        57.82        20.60         4.84         0.30 

IFR        17.39        44.98        23.69         0.48 

MVFR         6.76        16.70        36.97         1.67 

VFR        18.03        17.73        34.50        97.55 

 
To demonstrate the variation of those statistics between warm months and cool months, the same 
computation is conducted with the data of January and February 2019. Tables 4 and 5 show the 
resulting statistics. It is profoundly significant that the Hit rate are increased while the false alarm 
forecast ratio is decreased, particularly in the categories LIFR and IFR.  Though it is common for 
the skill of the forecast and of the analysis to be clearly better in winter, the tabulated 
improvements seem too big to be explained by these ordinary seasonal effects; rather they seem 
to be a reflection of other factors.  We speculate that the improvement in HRRR forecasts starting 
from late June 2018 contributed to this improvement to some degree. 
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Table 4:  Contingency table for visibility: Percentage values are computed with the data of 
January and February 2019.  The forecast is produced by the HRRR.   

  OBSERVATION 

 
 
 

FORECAST 

 LIFR        IFR       MVFR        VFR 

LIFR        50.56        22.02         9.51         0.85 

IFR        14.29        21.15        13.43         1.53 

MVFR         5.90         9.06         9.03         1.30 

VFR        29.25        47.78        68.03        96.33 

 
 
Table 5: Contingency table for ceiling height: Percentage values are computed with data of 
January and February 2019. 

  OBSERVATION 

 
 
 
 
FORECAST 

 LIFR IFR MVFR VFR 

LIFR 63.92 23.47 11.85 1.03 

IFR 27.17 54.63 27.89 1.16 

MVFR 6.26 16.47 40.15 4.65 

VFR 2.65 5.43 20.10 93.16 

 
 
4. Nonlinear Transformation Function and parameters estimation 
   
An inherent property of the visibility and ceiling variables which makes them problematic to 
analyze is their typically very large dynamical range. For variables of this type it is often 
advantageous to apply a nonlinear transformation to each variable before performing the analysis. 
Primarily, the motivation for doing this is to make the characteristic error variances in the 
background values more uniform over the range of values. Additionally, it is sometimes possible 
to make the distributions of these errors appear more Gaussian.  While the logarithmic 
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transformation is one such widely used function, we have found that, for visibility and ceiling, it 
seems to overcompensate for the nonuniformity of the distributions of the original variables. 
Consequently, we seek a generalization that allows us to choose a nonlinear transformation that 
is, in some definite sense, intermediate between the linear and logarithmic functions. 
 
4.1 Nonlinear Transformation Function  
The derivation of the general nonlinear transformation function is described in detail in Appendix 
A.  The transformation function transforms a measured variable with non-uniform error into a new 
variable tending to render the error of that function uniform.  
The formula is: 
𝐺𝐺(𝑝𝑝; 𝑥𝑥) = [𝑥𝑥𝑝𝑝 − 1]/𝑝𝑝  
Here, 𝑥𝑥 is the variable to be transformed and 𝑝𝑝 is a real constant. The transformation converts 𝑥𝑥, 
which is not a Gaussian variable into the space of 𝐺𝐺(𝑝𝑝; 𝑥𝑥).  The parameter 𝑝𝑝 modulates the 
function: when 𝑝𝑝→0, it is the natural logarithm, whereas when 𝑝𝑝 = 1, it is a linear function. Figure 
8 shows the function family with several 𝑝𝑝 values: 
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 Figure 8: Family of general nonlinear transformation function with different p. 
 
  
Our process starts to apply G(p;x)  to both observations and the first guess, and computes their 
differences, i.e., the innovations, given a p in the range [0-1] with an interval of 0.1.  Knowing that 
the weather systems associated with aviation-affecting weather are totally different from those 
associated with clear weather, we classify the innovation into two regimes, R1 with small values, 
and R2 with big values.  The threshold is based on the upper value of the Marginal Visual Flight 
Rules plus a fluctuation range, 10,000 meters for visibility, and 1143 meters for ceiling height.  
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The essential question is whether there is an optimal 𝑝𝑝.  We use a subjective detection by visually 
examining the variations of histogram shape:  if the shapes of histograms of R1 and R2 change 
clearly with two adjacent values, a so-called optimal 𝑝𝑝 exists, which lies within the range of these 
values.  A schematic demonstration is given in Figure 9: given a value of p1, the left panel shows 
a fat shape of the histogram for R1 and a narrow shape for R2; in the right panel, the fat shape for 
R1 becomes narrower, and the shape of R2 becomes broad when p1 is replaced by p2 in the 
sequence.  We are wondering whether this discriminating method is analogous to the way to find 
a maximum or minimum value of a curve function, in which the derivative sign (considered as a 
metric), is reversed from one regime to another regime of the function.    

 
 
 Figure 9: A schematic figure on determination of whether an optimal p exists. For explanation, 
see text.  
 
With real data, the histogram shapes are not as distinctive as in Figure 9.  Figures 10-11 are the 
histograms computed from the visibility innovation data of June and July 2018.  We have 
examined the histograms generated with a varying 𝑝𝑝 in the range [0,1] with a 0.1 interval. 
We notice the histograms with big 𝑝𝑝 values are similar to each other, and that the significant shape 
changes seem to occur when 𝑝𝑝 is less than 0.3.  To ‘zoom in’ within this range, three histograms 
are presented with 𝑝𝑝 ≤ 0.2 below. Figure 10 shows the histograms for visibility, in R1, with 6 testing 
values of p labelled at the top of each panel.  Figure 11 is similar to Figure 10 but for the region 
R2.  By visual comparison between Figure 10 and Figure 11, the major change in the shape seems 
to occur between the values of 0.3 to 0.2. 
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Figure 10:  The histograms derived with the visibility in R1 with 6 testing values of 𝒑𝒑 labelled 
at the top of each panel.  The 𝑿𝑿-axis is for bin numbers, and the 𝒀𝒀-axis for the count of occurring 
events within a bin, scaled by 1000. The criterion discriminating the two regimes is 10,000 
meters. 
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Figure 11: The histograms derived with the visibility in R2 with 6 testing values of p labelled 
at the top of each panel.  The X-axis is for bin numbers, and the Y-axis for the count of occurring 
events within a bin, scaled by 20,000. The criterion discriminating the two regimes is 1000 
meters. 
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Figures 12-13 are the histograms for ceiling height.  The shapes of histograms in R1 are 
remarkably different from that of visibility by possessing two distinctive modes with 𝑝𝑝 ≤0.5. The 
mode positions gradually shift from the high end to the low end in 𝑥𝑥-axis.  The major change in 
the shape seems to occur between the values of 0.3 to 0.2 for visibility, and 0.2 to 0.1 for cloud 
ceiling.  
The parameter used in the final experiment is 𝑝𝑝=0.2 for visibility and 𝑝𝑝=0.1 for cloud ceiling, which 
were estimated based on the limited available data generated by the early study.  It is important 
to point out that, as the experiment runs continued, we collected months-long data, such as the 
data of June and July 2018, as well as a couple of small data sets. We have computed the same 
statistics with those data sets, and found that the determined 𝑝𝑝 fluctuated slightly with data 
samples, and noticed that the major change always likely occurs along with a small p value.   
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Figure 12: The histograms of ceiling height in R1 with 6 testing values of 𝒑𝒑 labelled at the top 
of each panel.  The 𝑿𝑿-axis is for bin numbers, and the 𝒀𝒀-axis for the count of occurring events 
within a bin, scaled by 1000. The criterion discriminating the two regimes is 3000 feet. 
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Figure 13: The histograms of ceiling height in R2 with 6 testing values of 𝒑𝒑 labelled at the top 
of each panel.  The 𝑿𝑿-axis is for bin numbers, and the 𝒀𝒀-axis for the count of occurring events 
within a bin, scaled by 20,000. The criterion discriminating the two regimes is 1143 meters. 
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4.2 Estimated error statistics  
 
The estimated statistical errors in the observation and the first guess were obtained by analyzing 
the data sets of the ‘innovation’, or observation minus forecast (OMF), and the difference between 
the observation and the analysis (OMA), generated by the RTMA analysis procedures for several 
time periods.  Assuming the statistical error of each observation is independent of that of the 
forecast first guess, the variance of OMF is partitioned into the variance of each part.  Though the 
estimation is subjective, it still provides a reasonable range to the statistical error. To refine the 
estimate, single observation tests were used to check and adjust these statistics, and the real-
time experimental runs spanning several months were also used to adjust the statistics based on 
the overall analysis that fits to the observations. 
 
5. Examining and evaluating the impact of NLTF 
 
We examine the results of RTMA-RU runs performed since March 2018.  The data used in the 
following computation covers the period of October and November 2018.  Because the 
experimental runs were performed in the computer platforms for developers, there were missing 
dates in the experimental run when the computers were not accessible. Those missing dates are 
excluded from the control runs to form the matched data set.  
The assessments consist of the comparisons between the experiment and the control runs, 
throughout evaluating the overall statistics, visual inspection of the 2D-fields, and the categorical 
statistics.  We want to emphasize the use of categorical statistics, because the general statistics 
for continuous variables are not suitable measures for visibility and ceiling height.   
The evaluation of the hourly RTMA experimental results is not presented here, because the 
experiment also uses a new data selection scheme in addition to using NLTF. Therefore it is hard 
to purely discern the impact of the NLTF on the improvements of hourly RTMA performance.  
However, we include those results in the Appendix B2 for a complete document for this upgrade 
of the RTMA system. 
 
5.1 15-minute averaged critical success index and false alarm ratio 
 
Critical success index (CSI) and false alarm ratio (FAR) are used to measure the categorized 
analysis fields. The CSI and FAR are computed according to the classification shown in Table 6. 
 
Table 6:  A schematic table lists the components in a two-level contingency table. 

  OBSERVED 

 
 
 

FORECAST 

 YES NO TOTAL 

YES a b a + b 

NO c d c + d 

TOTAL a + c b + d n 
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CSI= a/(a + b + c), represents the analysis accuracy, whereas FAR = b/(a + b), represents the 
count of wrong classification versus the total counts of classification.  Note the denominator is the 
counts of forecasting YES.   
 
Figure 14 shows the Critical success index (CSI) of visibility analysis aggregated by each 15 
minutes for October 2018. The red lines are for the control runs and the blue for the experimental 
runs. In the bottom panel, the dotted lines are for visibility less than 1 mile, and the solid lines are 
for visibility less than 3 miles. In the top panel, dotted lines are for visibility less than 5 miles and 
solid lines for larger than 5 miles. Figure 15 is similar to Figure 14 but for cloud ceiling.  Data are 
classified using the upper values of four categories. It is obvious that the CSIs of the experiments 
are consistently higher than those of the control, except in the VFR category.  

 
 
Figure 14: Critical success index of visibility analysis aggregated over each 15 minutes in 
October 2018.  The red lines are for the control runs and the blue for the experimental runs.  
In the bottom panel, the dotted lines are for visibility less than 1 mile, and the solid lines are 
for visibility less than 3 miles. In the top panel, dotted lines and solid lines are for visibility 
less than 5 miles and larger than 5 miles respectively. 
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Figure 15:  Critical success index of ceiling height analysis aggregated over each 15 minutes in 
October 2018.  The red lines are for the control runs and the blue for the experimental 
runs.  In the bottom panel, the dotted lines are for ceiling height less than 500 feet; the solid 
lines are for ceiling height less than 1000 feet.  In the top panel, dotted lines and solid lines 
are for ceiling height less than 3000 feet and larger than 3000 feet respectively. 

 
As a counterpart of the CSI, the false alarm ratio (FAR) of visibility and ceiling height of the 
experimental runs, computed with the same data set, is consistently smaller than that of the 
control run, as shown in Figures 16 and 17. 
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Figure 16:  Similar to Figure 14 for visibility, but the statistic is the false alarm ratio. 
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Figure 17:  Similar to Figure 15 for ceiling height, but the statistic is the false alarm ratio. 
 
 
The same computations are computed with the data of November 2018.  The improvements 
remain in the experimental runs: higher CSI and lower FAR relative to the control runs (not 
shown). 
 
5.2 Case study   
 
Figure 18 shows a comparison of ceiling height analysis between the control (left panel) and the 
experiment (right panel) for a case, 1700Z 21 March 2018. The bottom panel shows the 
corresponding observations, and the dot color denotes the value as in the color scales. Many 
stations reported the ceiling heights with 400--800 feet, especially in the Mid-Atlantic Region. But 
the analyzed values of the control (left panel) mainly represent the high values in the first guess, 
and did not reflect some observations.  With the new algorithm the analyzed ceiling height values 
(right panel) are much closer to the observations.   
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Figure 18: Comparison in ceiling height analysis between the control (top left panel) and the 
experiment (top right panel) for the case 1700Z 21 March, 2018.  Bottom panel shows the 
observed ceiling height, and values are denoted by the color as in the scale, in feet. 
 
 
Table 7 shows the comparison between the observed and the analyzed ceiling height at six 
selected airports in the Central Eastern area for the same case as the above.  Old Analysis 
denotes control, and the New Analysis the experiment.  The differences between the observed 
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and forecast background are quite large, the old scheme did not reflect much of the observation, 
whereas the experimental run reflects the observed poor ceiling height situations effectively in the 
NLTF space. 
 
Table 7:  Ceiling height (in feet) at six airports in the Central Eastern Area on 1700Z 21 March 
2018 as observed by the ASOS (“Observed”), Forecast by the HRRR (“Background”) or 
analyzed by the RTMA (“Old Analysis” and “New Analysis”). “Old Analysis” denotes the control 
(operational RTMA) and “New Analysis” denotes the experimental RTMA with NLTF. 
 

Airport Observed Background Old Analysis New Analysis 

KLNS 700 1890 1757 597 

KNAK 800 1879 1622 487 

KILG 500  1931 1791 609 

KMQS 100 1911 1757 311 

KPHL 1200 1900 1766 787 

KBWI 700 1900 1650 633 
 
 
5.3 Hit rate and false alarm ratio from multi-level contingency tables 
 
We computed the contingency tables for both visibility and ceiling height categorized according 
to FAA categories.  The values are computed based on the analysis products generated by the 
control and the experimental runs. Tables 8-9 lists the Hit rate in percent for visibility and ceiling 
height, respectively, for October 2018; similarly, Tables 10-11 are for the results computed data 
of November 2018.  The values in brackets denote false alarm ratio. The values in the last row 
show the differences between the experiment and the control, where the bold red values indicate 
that the control run is better than the experimental run. 
 
Table 8:  Hit rate and false alarm ratio (×100) of visibility computed from the control and the 
experiment runs respectively.  Data cover the period of October 2018.  False alarm ratio is 
annotated in brackets. 

  LIFR 
 

IFR 
 

MVFR 
 

VFR 
 

Control 48.98 [32.50] 41.13 [54.97] 43.13 [64.93] 98.10 [1.84] 

Experiment 49.02 [32.26] 41.15 [54.94] 43.10 [64.97]  98.10 [1.84] 

 Exp – Control 0.04 [ -0.24] 0.02 [- 0.03] 0.03 [0.04] 0.00 [0.00] 

 



27 
 

Table 9:  Hit rate and false alarm ratio (×100) of ceiling height computed from the control and 
the experiment runs respectively.  Data cover the period of October 2018.  False alarm ratio 
is annotated in brackets. 

  LIFR 
 

IFR 
 

MVFR 
 

VFR 
 

Control 70.60 [14.67] 66.39 [40.73] 66.92 [31.07] 96.63 [4.20] 

Experiment 70.69 [14.27] 66.52 [ 40.41] 67.16 [30.94] 96.66 [4.18] 

Exp - Control 0.09 [-0.40] 0.13 [-0.32] 0.24 [-0.13] 0.03 [-0.02] 

 
 
Table 10:  Hit rate and false alarm ration (×100) of visibility computed from the control and 
the experiment runs respectively.  Data cover the period of November 2018.  False alarm ratio 
is annotated in brackets. 

  LIFR 
 

IFR 
 

MVFR 
 

VFR 

Control 56.34 [30.81] 50.77 [46.19] 47.23 [61.06] 97.64 [2.06] 

Experiment 56.39 [30.62] 50.79 [46.16] 47.18 [61.11] 97.64 [2.06] 

Exp - Control 0.05 [-0.19] 0.02 [-0.03] -0.05 [0.05] 0.0 [0.0] 

 
 
Table 11:  Hit rate and false alarm ratio (×100) of ceiling height computed from the control 
and the experiment runs respectively.  Data cover the period of November 2018.  False alarm 
ratio is annotated in brackets. 

  LIFR 
 

IFR 
 

MVFR 
 

VFR 
 

Control 72.66 [16.71] 65.37 [44.31] 65.52 [27.68] 95.38 [6.58] 

Experiment 72.77 [16.18] 65.50 [43.95] 65.81 [27.57] 95.41 [6.56] 

Exp – Control 0.11 [-0.53] 0.13 [-0.36] 0.29 [-0.11] 0.03 [-0.02] 

 
In general, the differences are small, but the experimental runs perform consistently better than 
the control runs. This is particularly noticeable in ceiling height in LIFR and IFR for both October 
and November 2018.  Since the traditional significance test method is not suitable for visibility and 
ceiling height, we do not do examine the significance. Though the results between the experiment 
and control are similar, the dataset these categorical values were evaluated with have several 
million samples. It is doubtful that these differences are due to noise in the dataset. In addition, 
even a 0.1% improvement in visibility hit rate would mean at least 73 more LIFR events caught, 
or 144 more for IFR events, given the total number of observed LIFR is about 73,000, or about 
144,000 for IFR in October 2018.  Lastly, the data sample in this study might not be diverse or 
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large enough to draw conclusions in these categories considering that the LIFR/IFR are rare 
events compared to the MVFR and VFR (referring to Figures 4-7). 
 
It is important to mention the contradictory features between the statistics of Tables 8-11 and the 
Table 1 of a previous article (Yang et al. 2019). Tables 8-11 show very small differences between 
the control and the experimental runs, whereas the Table 1 of Yang et al. (2019) shows profound 
improvements in the experimental run. We speculate that the differences are due to the different 
data sample sizes used for Tables 8-11 and the Table 1 of Yang et al.; for the latter, though the 
total data samples were in the thousands, the time period only covered three days. We re-
computed the Hit rate and the FAR with the same three-day data. The Hit rate values in the LIFR 
and IFR are the same as in that Table 1.  The tiny changes in the MVFR and VFR are due to a 
‘bug’ in the previous computation: the computation for the MVFR category did not count the 
visibility equal to 3 miles or equal to 5 miles.  We also found that the FAR in that Table 1 was the 
false alarm ratio not expressed as a percentage.  The false alarm ratio denotes the probability of 
false detection. The re-computed hit rate and false alarm ratio, after the error was corrected, are 
now listed in Table 12 below.  
 
Table 12:  Hit rate and false alarm ratio (×100) computed from observed and analyzed 
visibility generated by the control and the experiment runs. Data covers the period of 31 
March 2018 to 03 April 2018.  The false alarm ratio is annotated in brackets. 

  LIFR 
 

IFR 
 

MVFR 
 

VFR 
 

Control 48.85 [55.55] 50.28 [42.21] 49.80 [60.95] 98.40 [1.15] 

Experiment 71.99 [23.44] 70.04 [29.92] 61.86 [51.99]   98.61[0.61] 

 
 
6. Summary and discussion 
 
In this office note, we document the implementation of a nonlinear transformation function to 
surface visibility and ceiling height analysis in RTMA.  For assessments, we compared the 
categorical statistics, visual inspection of the 2D-fields, and multi-level contingency tables 
between the control and the experimental runs. The comparison shows the consistent 
improvement obtained by the experimental runs, particularly in the situations with bad weather 
events.   
As explained in the introduction, ceiling height and visibility are characterized by high degrees of 
discontinuity in both spatial and temporal dimensions; therefore, their direct assimilation in a 
variational system does not yield realistic results.  Our study suggests that the NLTF 
transformation mitigates the problem. We are aware of another application of NLTF:  Chen et al. 
(2020) have applied the NLTF directly to radar reflectivity data assimilation within the GSI 
En3DVar framework, by transforming the hydrometeor mixing ratios into new control variables, 
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named CVpq.  The performance of assimilating radar data using CVpq is compared with those 
using hydrometeor mixing ratios as control variables and those using logarithmic hydrometeor 
mixing ratios as control variables for five convective storm cases in spring of 2017. Their study 
shows that CVpq with p=0.4 gives the best performance in terms of 0-3 hour forecasts of 
composite reflectivity and updraft helicity tracks. 
 
We recognize some limitations in our study, which are:  
  

● There is uncertainty in estimating the 𝑝𝑝 values.  We detect an “optimal” 𝑝𝑝 using empirical 
and subjective methods, as described in Section 4.   Ideally, we would like to find an 
objective way to determine the existence of an optimal 𝑝𝑝, such as performing a set of 
parallel runs and comparing the results respectively, as was done by Chen et al. (2020) 
and documented in that paper.  

● In the early stage of this work, a small data sample was used to estimate the p value and 
the statistical errors for the observation and the first guess. Later those statistical errors 
were adjusted based on a months-long experimental run, but p was not adjusted.  

● The statistical errors and error correlation length used in this study do not vary with 
seasons as they should (Glahn et al. 2017, Carley et al. 2018). 

● We did not do much on the modification of the forecast error variance.  The forecast error 
variance is still prescribed as a constant in NLTF space; i.e. the variation with topography 
is neglected for simplicity.  Some recent studies prescribed the development of a 
heterogeneous forecast error covariance (Michel et al. 2011), specifically, the error 
statistics are formulated based on stratified state groups.  We think these methods may 
be suitable for ceiling and visibility, particularly in the mountain and valley regions. 

● Because the variances of the converted visibility and ceiling height are still varying clearly 
with the new states, we wonder whether there is a function that can convert visibility and 
ceiling height into near-Gaussian variables. Note the main measures are for categorical 
statistics. In Glahn and Im (2015), they explain why they build up a statistical forecast 
model for categorical visibility and ceiling height forecast, rather than using them as 
continuous variables, quoting here: “Many attempts to statistically deal with highly non-
normal variables as continuous, especially where the rare values are the most important, 
have met with limited success, if not outright failure”.   
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Appendix  A.  Nonlinear Transformation Formula 
This appendix describes transformations of a measured variable that tend to render the error in 
that function uniform when the error in the original variable isn’t. In the case where the error in the 
original variable is proportional to that variable, the needed transformation is the logarithm; for 
other cases where the error in the original variable is proportional to some power of the original 
variable, then the needed function can be thought of as a generalization of the logarithm, (𝑥𝑥𝑝𝑝 −
1)/𝑝𝑝, say. We can also always scale the function to make the standard error in the function of the 
measurement unity. 
Let the error 𝜎𝜎(𝑠𝑠) of a measured variable 𝑠𝑠 be a nonlinear function of s itself. Then, if 𝑓𝑓(𝑠𝑠) is some 
nonlinear function of s, the standard error, 𝜙𝜙 , of 𝑓𝑓 is, to a first approximation, given by: 

    𝜙𝜙 =  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝜎𝜎(𝑠𝑠).                       (A.1) 

  
So, if we want the function to be such that 𝜑𝜑 is constant over the range of s, then all we have to 
do is to integrate the differential equation, 

         𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜙𝜙
𝜎𝜎(𝑑𝑑)

.                  (A.2) 

Moreover, we can choose a scaling of this function, f, to make the magnitude of 𝜑𝜑 conveniently 
equal to one, whereupon the needed function is simply defined by the integral: 

    𝑓𝑓(𝑠𝑠) =  ∫ 1
𝜎𝜎(𝑑𝑑′)

 𝑑𝑑𝑠𝑠′𝑑𝑑 ,                                                                                               (A.3) 

For example, if 𝜎𝜎(𝑠𝑠) = 𝑎𝑎𝑠𝑠 , for some constant, 𝑎𝑎 , sufficiently smaller than one, the function,  

    𝑓𝑓(𝑠𝑠) =  1
𝑎𝑎

ln(𝑠𝑠),                                          (A.4) 

will provide the variable transformation of the observation 𝑠𝑠 that now has a standard error 
approximately unity for the whole range of 𝑠𝑠. 
If instead, the error in 𝑠𝑠 is proportional to some power of 𝑠𝑠, say, 
    𝜎𝜎(𝑠𝑠) = 𝑎𝑎𝑥𝑥1−𝑝𝑝,                            (A.5) 
for some  𝑝𝑝, then the needed function, 𝑓𝑓(𝑠𝑠), will be: 

    𝑓𝑓(𝑠𝑠) =  1
𝑎𝑎
𝐺𝐺(𝑝𝑝; 𝑠𝑠),                  (A.6) 

where 𝐺𝐺(𝑝𝑝; 𝑠𝑠) is the ‘generalization of the logarithm’, 

    𝐺𝐺(𝑝𝑝; 𝑠𝑠) =  (𝑥𝑥𝑝𝑝−1)
𝑝𝑝

.                (A.7) 

 
For other, more general forms of the function 𝜎𝜎(𝑠𝑠), we can still use the same integration trick, but 
we won’t then be using the 𝐺𝐺 function. Some of the functional forms we obtain by varying the 
exponent 𝑝𝑝 are illustrated in Figure 8. 
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Appendix B. Comparison of hourly analysis between the control and the 
experiment 
 
As mentioned in Section 5, in addition to NLTF, a different data selection scheme is used in the 
hourly RTMA experimental run, which only chooses the observation closest to the analysis time. 
Therefore the comparison between the experimental and control runs is not an “oranges to 
oranges” comparison for detecting the impact of NLTF.  However, it is necessary to demonstrate 
these results, because the NLTF is used in the latest operational RTMA system.  
 
B.1   Hourly averaged critical success index and false alarm ratio  
 
Figures B1-B3 shows the Critical success index (CSI, top panels) and false alarm ratio (FAR, 
bottom panels) for visibility less than one mile, less than three miles, and less than or equal to 
five miles, respectively. The values are hourly averaged for the period of August 1 to October 12, 
2018. These figures are generated by utilizing the Model Analysis Tool Suite (MATS, 2018) 
developed by GSD, NOAA. The red line is for the control run and the blue is for the experimental 
runs.  CSI measures the fraction of correctly predicted events, a score of 1 denoting a perfect 
forecast model, whereas FAR is the percentage of the wrong forecast out of the total forecast 
records for a given event, a score of 0 is perfect.  It is important to point out that the upper values 
of each category are used to classify the data into two groups, for instance, a group with visibility 
less than three miles or with visibility less than or equal to five miles. The performance information 
in an FAA-defined category can be inferred by comparing the figures of adjacent groups. 
 
The top panels of Figures B1-B2 show that the experimental run improves the CSI, while 
significantly reducing the FAR in category LIFR for visibility and ceiling height respectively. The 
improvements significantly pass the 95% significance bars. 
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Figure B1: Critical success index (top panel) and false alarm ratio (bottom panel) for visibility 
< 1 mile aggregated by time of day over a period covering August 1 to October 12, 2018.  The 
red line is for the control run and the blue for the experimental run.  The vertical bars give the 
range of 95% significance. 
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Figure B2:  Similar to Figure B1 but for ceiling height < 500 feet. 
 
Figure B3 shows the CSI and FAR for visibility less than three miles. Though the experiment 
improves the CSI and reduces the FAR, the improvement in the CSI is not significant during some 
afternoon periods.  Figure B4 shows the CSI and FAR for ceiling height less than 1000 feet, the 
improvements are clearly significant.  When visibility and ceiling height values reach the upper 
value of MVFR, the experimental run does not show much improvement, specifically for visibility, 
as shown by Figure B5 where the significance bars overlap. 
 
. 
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Figure B3: Similar to Figure B1 but for visibility < 3 miles. 
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Figure B4: Critical success index (top panel) and False alarm ratio (bottom panel) for ceiling 
height < 1000 feet. 

 
 
 
 
 
 
 
 



36 
 

 
Figure B5: Critical success index (top panel) and false alarm ratio (bottom panel) for visibility 
< 5 miles. 

 
B.2 Hit rate and false alarm ratio 
 
Tables B1 and B2 list the Hit rate and false alarm ratio (annotated in brackets) between the control 
and the experiment for visibility and ceiling height respectively, computed with the data of June 
and July 2018. Data are matched between the control and the experiment, and only assimilated 
data are considered in the computation.  Those two measures demonstrate the improvements, 
consistently with the aforementioned.  Tables B3 and B4 list the same statistics but with data from 
October and November 2018.  In short, the hourly RTMA experimental runs improve the visibility 
and ceiling height based on the evaluation with large data sets. 
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Table B1:  Hit rate and false alarm ratio (annotated in brackets) computed from the analysis 
visibility generated by hourly RTMA experimental runs and the control runs respectively, 
with data from June and July 2018. 

 LIFR 
 

IFR 
 

MVFR 
 

VFR 
 

Control 39.03 [35.77] 23.87[72.87] 28.87[74.72] 98.93[1.31] 

Experiment 40.05[32.97] 24.69[72.77] 28.83[74.76] 98.96[1.25] 

 
 
Table B2:  Similar to Table B1, but for ceiling height. 

 LIFR IFR MVFR VFR 

Control 70.28[24.58] 54.18[50.07] 51.47[39.11] 98.40[2.55] 

Experiment 71.25[21.08] 55.40[47.88] 53.26[38.16] 98.50[2.45] 

 
 
Table B3:  Hit rate and false alarm ratio (annotated in brackets) computed from the analysis 
visibility generated by hourly RTMA experimental runs and the control runs respectively, 
with data from October and November 2018. 

 LIFR IFR MVFR VFR 

Control 53.39[32.73] 46.06[50.07] 43.50[63.18] 98.15[1.82] 

Experiment 54.34[30.45] 46.68[50.02] 43.54[63.16] 98.18[1.78] 

 
 
Table B4:  Similar to Table B2 for ceiling height, but the analysis data is from October and 
November 2018. 

  LIFR IFR MVFR VFR 

Control 71.67[21.50] 66.09[46.05] 65.81[30.13] 95.78[4.27] 

Experiment 72.97[17.04] 67.41[43.40] 68.11[29.25] 96.04[4.08] 
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